Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo.
نویسندگان
چکیده
Human prostate cancers (PCa) express great variability in their ability to metastasize to bone. The identification of molecules associated with aggressive phenotypes will help to define PCa subsets and will ultimately lead to better treatment strategies. The chemokine stromal-derived factor-1 (SDF-1 or CXCL12) and its receptor CXCR4 are now known to modulate the migration and survival of an increasing array of normal and malignant cell types including breast, pancreatic cancers, glioblastomas, and others. The present investigation extends our previous investigations by determining the expression of CXCR4 and CXCL12 in humans using high-density tissue microarrays constructed from clinical samples obtained from a cohort of over 600 patients. These data demonstrate that CXCR4 protein expression is significantly elevated in localized and metastastic cancers. At the RNA level, human PCa tumors also express CXCR4 and message, but overall, they were not significantly different suggesting post-transcriptional regulation of the receptor plays a major role in regulating protein expression. Similar observations were made for CXCL12 message, but in this case more CXCL12 message was expressed by metastastic lesions as compared to normal tissues. PCa cell lines also express CXCL12 mRNA, and regulate mRNA expression in response to CXCL12 and secrete biologically active protein. Furthermore, neutralizing antibody to CXCL12 decreased the proliferation of bone homing LNCaP C4-2B and PC3 metastastic tumor cells. These investigations provide important new information pertaining to the molecular basis of how tumors may 'home' to bone, and the mechanisms that may account for their growth in selected end organs.
منابع مشابه
CXCR4 and CXCL12 (SDF-1) in prostate cancer: inhibitory effects of human single chain Fv antibodies.
PURPOSE Metastasis is a major cause of morbidity in prostate cancer (PCa). Several studies have shown that the chemokine receptor CXCR4 and its ligand, CXCL12 (stromal cell-derived factor-1), regulate tumor cell metastasis to specific organs. Recently, it was demonstrated that CXCL12 enhances PCa cell adhesion, migration, and invasion, implicating CXCR4 in PCa metastasis. In this study, we exam...
متن کاملThe Effects of Tamoxifen in Combination with Tranilast on CXCL12- CXCR4 Axis and Invasion in Breast Cancer Cell Lines
It has been reported that CXCL12 binding to CXCR4 induces several intracellular signaling pathways, and enhances survival, proliferation, and migration of malignant cells. Herein we examined the effects of anti-estrogen tamoxifen and anti-allergic tranilast drugs as a single or in combination on invasion by two in vitro invasion assays, wound-healing and matrigel invasion on MCF-7 and MDA-MB-23...
متن کاملMucosal angiogenesis regulation by CXCR4 and its ligand CXCL12 expressed by human intestinal microvascular endothelial cells.
Mice genetically deficient in the chemokine receptor CXCR4 or its ligand stromal cell-derived factor (SDF)-1/CXCL12 die perinatally with marked defects in vascularization of the gastrointestinal tract. The aim of this study was to define the expression and angiogenic functions of microvascular CXCR4 and SDF-1/CXCL12 in the human intestinal tract. Studies of human colonic mucosa in vivo and prim...
متن کاملProstate Cancer Metastasis to Bone Use of the Stromal Cell-derived Factor-1/CXCR4 Pathway in
Neoplasms have a striking tendency to metastasize or “home” to bone. Hematopoietic cells also home to bone during embryonic development, where evidence points to the chemokine stromal cell-derived factor-1 (SDF-1 or CXCL12; expressed by osteoblasts and endothelial cells) and its receptor (CXCR4) as key elements in these processes. We hypothesized that metastatic prostate carcinomas also use the...
متن کاملUse of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone.
Neoplasms have a striking tendency to metastasize or "home" to bone. Hematopoietic cells also home to bone during embryonic development, where evidence points to the chemokine stromal cell-derived factor-1 (SDF-1 or CXCL12; expressed by osteoblasts and endothelial cells) and its receptor (CXCR4) as key elements in these processes. We hypothesized that metastatic prostate carcinomas also use the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cellular biochemistry
دوره 89 3 شماره
صفحات -
تاریخ انتشار 2003